V = 1627.75 (19) Å³

 $0.40 \times 0.26 \times 0.14 \text{ mm}$

9336 measured reflections

4374 independent reflections

4327 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 9.28 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int}=0.064$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrachlorido(2,3-di-2-pyridylpyrazine- $\kappa^2 N^1 N^2$)platinum(IV)

Parvaneh Delir Kheirollahi Nezhad,^a Fatemeh Azadbakht,^b Vahid Amani^c* and Hamid Reza Khavasi^d

^aDepartment of Chemistry, Payame Noor University, Iran, ^bIslamic Azad University, Doroud Branch, Doroud, Iran, ^cResearch Institute in Education, 16 Hojiat Dost Street, Vessal Shirazi Avenue, Tehran, Iran, and ^dDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran

Correspondence e-mail: v_amani2002@yahoo.com

Received 25 February 2008; accepted 17 March 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.010 Å; R factor = 0.033; wR factor = 0.087; data-to-parameter ratio = 20.9.

In the title complex, $[PtCl_4(C_{14}H_{10}N_4)]$, the Pt^{IV} atom is sixcoordinated in an octahedral configuration by two N atoms from one 2,3-di-2-pyridylpyrazine ligand and four terminal Cl atoms. Intermolecular C-H···Cl and C-H···N hydrogen bonds stabilize the crystal structure.

Related literature

For general background, see: Hedin (1886); Joergensen (1900); Bajusaz et al. (1989); Vorobevdesyatovskii et al. (1991). For related structures, see: Bokach et al. (2003); Casas et al. (2005); Crowder et al. (2004); Gaballa et al. (2003); Garnovskii et al. (2001); Gonzalez et al. (2002); Hafizovic et al. (2006); Hambley (1986); Kuduk-Jaworska et al. (1988, 1990); Junicke et al. (1997); Khripun et al. (2006); Kukushkin et al. (1998); Luzyanin, Haukka et al. (2002); Luzyanin, Kukushkin et al. (2002); Witkowski et al. (1997); Yousefi et al. (2007).

Experimental

Crystal data

 $[PtCl_4(C_{14}H_{10}N_4)]$ $M_r = 571.14$ Orthorhombic, $P2_12_12_1$ a = 6.6849 (4) Å b = 14.9604 (12) Å c = 16.2761 (10) Å

Data collection

Stoe IPDSII diffractometer Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) $T_{\min} = 0.070, \ T_{\max} = 0.270$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	$\Delta \rho_{\rm max} = 1.44 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.087$	$\Delta \rho_{\rm min} = -1.82 \text{ e } \text{\AA}^{-3}$
S = 1.10	Absolute structure: Flack (1983),
4374 reflections	1849 Friedel pairs
209 parameters	Flack parameter: 0.005 (9)
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cl1-Pt1	2.3219 (16)	Cl4-Pt1	2.3164 (18)
Cl2-Pt1	2.2945 (16)	N1-Pt1	2.036 (5)
Cl3-Pt1	2.3066 (16)	N2-Pt1	2.032 (6)
N2-Pt1-N1	80.4 (2)	Cl2-Pt1-Cl4	90.30 (6)
N2-Pt1-Cl2	176.45 (16)	Cl3-Pt1-Cl4	92.45 (7)
N1 - Pt1 - Cl2	96.12 (17)	N2-Pt1-Cl1	88.17 (17)
N2-Pt1-Cl3	94.15 (16)	N1-Pt1-Cl1	86.68 (17)
N1-Pt1-Cl3	174.20 (18)	Cl2-Pt1-Cl1	90.78 (6)
Cl2-Pt1-Cl3	89.26 (6)	Cl3-Pt1-Cl1	91.11 (6)
N2-Pt1-Cl4	90.54 (17)	Cl4-Pt1-Cl1	176.30 (7)
N1-Pt1-Cl4	89.68 (17)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdots Cl2$	0.93	2.68	3.279 (7)	122
C3-H3···Cl1 ⁱ	0.93	2.83	3.557 (7)	136
C4−H4···N4	0.93	2.59	3.000 (10)	107
$C7 - H7 \cdot \cdot \cdot Cl3$	0.93	2.69	3.247 (7)	120
$C14-H14\cdots Cl1^{ii}$	0.93	2.74	3.599 (8)	154
-				

Symmetry codes: (i) $-x + \frac{1}{2}, -y - 1, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y - \frac{1}{2}, -z - 1$.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to Payam Nor University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2404).

References

- Bajusaz, S., Janaky, T., Csernus, V. J., Bokser, L., Fedeke, M., Srkalovic, G., Redding, T. W. & Schally, A. (1989). Proc. Natl Acad. Sci. USA, 86, 6313– 6317.
- Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). *Inorg. Chem.* 42, 7560–7568.
- Casas, J. S., Castineiras, A., Parajo, Y., Sanchez, A., Gonzalez, A. S. & Sordo, J. (2005). *Polyhedron*, 24, 1196–1202.
- Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). *Inorg. Chem.* 43, 72–78.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703–710.
- Garnovskii, D. A., Kukushkin, V. Y., Haukka, M., Wagner, G. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Dalton Trans. pp. 560–566.
- Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470–478.
- Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416. Hambley, T. W. (1986). Acta Cryst. C42, 49–51.
- Hedin, S. G. (1886). Acta Univ. Lund. 22, 1–6.

- Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437– 439.
- Kuduk-Jaworska, J., Kubiak, M., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1990). Acta Cryst. C46, 2046–2049.
- Joergensen, S. M. (1900). Z. Anorg. Chem. 25, 353-377.
- Junicke, H., Schenzel, K., Heinemann, F. W., Pelz, K., Bogel, H. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 603–607.
- Khripun, A. V., Selivanov, S. I., Kukushkin, V. Y. & Haukka, M. (2006). *Inorg. Chim. Acta*, 359, 320–326.
- Kukushkin, V. Y., Pakhomova, T. B., Kukushkin, Y. N., Herrmann, R., Wagner, G. & Pombeiro, A. J. L. (1998). *Inorg. Chem.* 37, 6511–6517.
- Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882–1887.
- Luzyanin, K. V., Kukushkin, V. Y., Kuznetsov, M. L., Garnovskii, D. A., Haukka, M. & Pombeiro, A. J. L. (2002). *Inorg. Chem.* **41**, 2981–2986.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Vorobevdesyatovskii, N. V., Barinov, A. A., Lukin, Y. N., Sokolov, V. V., Demidov, V. N. & Kuptsov, A. Y. (1991). *Zh. Obshch. Khim.* **61**, 709–716.
- Witkowski, H., Freisinger, E. & Lippert, B. (1997). Chem. Commun. pp. 1315-1316
- Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2869–m2870.

Acta Cryst. (2008). E64, m575-m576 [doi:10.1107/S1600536808007228]

Tetrachlorido(2,3-di-2-pyridylpyrazine- $\kappa^2 N^1, N^2$)platinum(IV)

P. Delir Kheirollahi Nezhad, F. Azadbakht, V. Amani and H. R. Khavasi

Comment

Amine platinum(IV) complexes have been known since the end of the last century (Hedin, 1886; Joergensen, 1900). Some of them have cancerostatic properties from which new interest aroused in these complexes (Bajusaz *et al.*, 1989; Vorobevdesyatovskii *et al.*, 1991). Due to the kinetic inertness of hexachloro-platinate(IV), *cis*- and *trans*-[PtC1₄ L_2] complexes (L=N, O, P, S donor ligand) were mainly prepared by oxidation reactions of the corresponding platinum(II) complexes [PtCl₂ L_2] (Hedin, 1886; Joergensen, 1900).

Several Pt^{IV} complexes, with formula [PtCl₄(N—N)], such as [PtCl₄(bipyi)] (II) (Gaballa *et al.*, 2003), [PtCl₄(Me₂bim)] (III) (Casas *et al.*, 2005), [PtCl₄(bipy)] (IV) (Hambley, 1986), [PtCl₄(dcbipy)].H₂O (V) (Hafizovic *et al.*, 2006) and [PtCl₄(dpk)] (VI) (Crowder *et al.*, 2004) [where bipyi is 2,2'-bipyrimidinyl, Me₂bim is 1,1'-dimethyl-2,2'-bi-imidazolyl, bipy is 2,2'-bipyridine, dcbipy is 2,2'-bipyridine-5,5'-dicarboxylic acid and dpk is bis(2-pyridyl)ketone] have been synthesized and characterized by single-crystal X-ray diffraction method.

There are also several Pt^{IV} complexes with formula $[PtCl_4L_2]$, such as *cis*- and *trans*- $[PtCl_4(py)_2]$ (VII) (Junicke *et al.*, 1997), *cis*- and *trans*- $[PtCl_4(PzH)_2]$ (VIII) (Khripun *et al.*, 2006), *trans*- $[PtCl_4(NH_3)_2](1-Mu)$ (IX) (Witkowski *et al.*, 1997), *trans*- $[PtCl_4(1-Prim)_2]$ (X) (Kuduk-Jaworska *et al.*, 1988), *cis*- $[PtCl_4(1-Etim)_2]$ (XI) (Kuduk-Jaworska *et al.*, 1990), *trans*- $[PtCl_4(NH=C(NMe_2)OH_2]$ (XII) (Bokach *et al.*, 2003), *trans*- $[PtCl_4(NH=C(Me_3ON=CMe_2)_2]$ (XIII) (Kukushkin *et al.*, 1998), *cis*- $[PtCl_4(NH=C(Et)N=CPh_2)_2]$ (XIV) (Garnovskii *et al.*, 2001), *trans*- $[PtCl_4(NH=C(OH)Ph_2]$.2DMSO (XV) (Luzyanin, Kukushkin *et al.*, 2002), *trans*- $[PtCl_4(NH=C(OH)Et)_2]$ (XVII) (Luzyanin, Haukka *et al.*, 2002) and *trans*- $[PtCl_4(pz)_2]$ (XVIII) (Yousefi *et al.*, 2007) [where PzH is pyrazole, 1-Mu is 1-methyluracil, 1-Prim is 1-propylimidazole 1-Etim is 1-ethylimidazoyl and Pz is pyrazine] have been synthesized and characterized by single-crystal X-ray diffraction method. We report herein the synthesis and crystal structure of the title compound.

In the mononuclear title compound (Fig. 1), the Pt^{IV} atom is six-coordinated in octahedral configuration by two N atoms from one 2,3-di-2-pyridylpyrazine ligand and four terminal Cl atoms. The Pt—Cl and Pt—N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III) and (V).

In the crystal structure, intermolecular C—H···Cl and C—H···N hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure (Fig. 2).

Experimental

For the preparation of the title compound, a solution of 2,3-di-2-pyridylpyrazine (0.09 g, 0.37 mmol) in methanol (10 ml) was added to a solution of $H_2PtCl_6.6H_2O$, (0.20 g, 0.37 mmol) in methanol (10 ml) at room temperature. The suitable

crystals for X-ray diffraction experiment were obtained by methanol diffusion in a solution of orange precipitated in DMSO after one week (yield 0.18 g).

Refinement

H atoms were positioned geometrically with C-H = 0.93 Å and constrained to ride on their parent atoms with $U_{iso}(H)=1.2U_{eq}(C)$. The highest peak is 0.4 Å aprat from the Pt1 atom.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Tetrachlorido(2,3-di-2-pyridylpyrazine- $\kappa^2 N^1$, N^2)platinum(IV)

Crystal data	
$[PtCl_4(C_{14}H_{10}N_4)]$	$D_{\rm x} = 2.331 {\rm ~Mg~m}^{-3}$
$M_r = 571.14$	Melting point: 565-566 K K
Orthorhombic, $P2_12_12_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1050 reflections
a = 6.6849 (4) Å	$\theta = 1.9 - 29.2^{\circ}$
b = 14.9604 (12) Å	$\mu = 9.28 \text{ mm}^{-1}$
c = 16.2761 (10) Å	T = 120 (2) K
$V = 1627.75 (19) \text{ Å}^3$	Block, orange
Z = 4	$0.40\times0.26\times0.14~mm$
$F_{000} = 1072$	
Data collection	

oata collectio

Stoe IPDSII diffractometer	4374 independent reflections
Radiation source: fine-focus sealed tube	4327 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.064$

Detector resolution: 0.15 mm pixels mm ⁻¹	$\theta_{\rm max} = 29.2^{\circ}$
T = 120(2) K	$\theta_{\min} = 1.9^{\circ}$
rotation method scans	$h = -7 \rightarrow 9$
Absorption correction: Numerical (X-SHAPE and X-RED; Stoe & Cie, 2005)	$k = -20 \rightarrow 17$
$T_{\min} = 0.070, \ T_{\max} = 0.270$	$l = -22 \rightarrow 22$
9336 measured reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0439P)^2 + 6.2735P]$ where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.033$	$(\Delta/\sigma)_{\rm max} = 0.012$
$wR(F^2) = 0.087$	$\Delta \rho_{\text{max}} = 1.44 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.10	$\Delta \rho_{\rm min} = -1.82 \text{ e } \text{\AA}^{-3}$
4374 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
209 parameters	Extinction coefficient: 0.0011 (3)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1849 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.005 (9)
Hydrogen site location: inferred from neighbouring sites	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2795 (10)	-0.5902 (5)	-0.4681 (4)	0.0286 (13)
H1	0.3170	-0.6300	-0.5092	0.034*
C2	0.3870 (11)	-0.5866 (6)	-0.3975 (4)	0.0331 (15)
H2	0.4966	-0.6241	-0.3901	0.040*
C3	0.3330 (11)	-0.5272 (6)	-0.3366 (4)	0.0331 (14)
H3	0.4084	-0.5231	-0.2887	0.040*
C4	0.1659 (10)	-0.4738 (5)	-0.3472 (4)	0.0275 (12)
H4	0.1233	-0.4358	-0.3055	0.033*

0.0622 (8)	-0.4780 (4)	-0.4217 (4)	0.0221 (10)
-0.1195 (9)	-0.4247 (4)	-0.4420 (4)	0.0218 (11)
-0.3997 (8)	-0.4210 (5)	-0.5265 (4)	0.0245 (12)
-0.4677	-0.4395	-0.5733	0.029*
-0.4867 (9)	-0.3598 (5)	-0.4741 (5)	0.0315 (14)
-0.6191	-0.3433	-0.4828	0.038*
-0.1996 (9)	-0.3519 (4)	-0.3978 (4)	0.0244 (12)
-0.0817 (10)	-0.2972 (4)	-0.3392 (4)	0.0262 (12)
-0.1610 (11)	-0.2695 (5)	-0.2651 (5)	0.0314 (14)
-0.2912	-0.2840	-0.2500	0.038*
-0.0403 (15)	-0.2197 (5)	-0.2143 (5)	0.0403 (17)
-0.0855	-0.2024	-0.1627	0.048*
0.1475 (13)	-0.1955 (5)	-0.2404 (5)	0.0372 (16)
0.2293	-0.1601	-0.2075	0.045*
0.2123 (12)	-0.2246 (5)	-0.3161 (6)	0.0378 (17)
0.3391	-0.2073	-0.3334	0.045*
0.1281 (2)	-0.41434 (11)	-0.62538 (10)	0.0272 (3)
0.1441 (2)	-0.63100 (12)	-0.65809 (10)	0.0299 (3)
-0.2674 (2)	-0.52425 (12)	-0.69333 (11)	0.0312 (3)
-0.2288 (3)	-0.65930 (12)	-0.53083 (13)	0.0338 (4)
0.1199 (7)	-0.5372 (4)	-0.4799 (3)	0.0236 (10)
-0.2178 (7)	-0.4537 (4)	-0.5100 (4)	0.0240 (10)
-0.3883 (8)	-0.3242 (4)	-0.4123 (5)	0.0299 (12)
0.1041 (8)	-0.2763 (4)	-0.3664 (4)	0.0301 (12)
-0.05541 (3)	-0.537445 (15)	-0.582177 (14)	0.02145 (8)
	0.0622 (8) -0.1195 (9) -0.3997 (8) -0.4677 -0.4867 (9) -0.6191 -0.1996 (9) -0.0817 (10) -0.2912 -0.0403 (15) -0.0855 0.1475 (13) 0.2293 0.2123 (12) 0.3391 0.1281 (2) 0.1441 (2) -0.2674 (2) -0.2288 (3) 0.1199 (7) -0.3883 (8) 0.1041 (8) -0.05541 (3)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.027 (3)	0.033 (3)	0.026 (3)	0.013 (3)	0.003 (3)	0.001 (2)
C2	0.026 (3)	0.046 (4)	0.027 (3)	0.005 (3)	0.000 (3)	0.004 (3)
C3	0.028 (3)	0.044 (4)	0.027 (3)	-0.001 (3)	-0.007 (3)	0.005 (3)
C4	0.026 (3)	0.037 (3)	0.020 (3)	0.001 (3)	0.000 (2)	0.002 (2)
C5	0.016 (2)	0.030 (3)	0.020 (2)	-0.005 (2)	0.003 (2)	0.001 (2)
C6	0.018 (2)	0.024 (3)	0.023 (3)	-0.004 (2)	0.001 (2)	0.001 (2)
C7	0.013 (2)	0.029 (3)	0.032 (3)	-0.002 (2)	0.000 (2)	0.004 (2)
C8	0.017 (3)	0.035 (3)	0.043 (4)	0.005 (2)	0.001 (3)	0.004 (3)
C9	0.021 (3)	0.025 (3)	0.027 (3)	0.001 (2)	0.002 (2)	-0.002 (2)
C10	0.023 (3)	0.027 (3)	0.028 (3)	0.004 (2)	0.003 (2)	0.003 (2)
C11	0.032 (3)	0.029 (3)	0.033 (3)	0.002 (3)	0.006 (3)	-0.001 (3)
C12	0.057 (5)	0.033 (3)	0.031 (3)	0.008 (4)	-0.005 (4)	-0.011 (3)
C13	0.039 (4)	0.034 (4)	0.038 (4)	0.001 (3)	-0.005 (3)	-0.004 (3)
C14	0.034 (4)	0.031 (4)	0.049 (5)	-0.005 (3)	-0.004 (3)	0.004 (3)
Cl1	0.0207 (6)	0.0351 (8)	0.0258 (7)	-0.0030 (6)	-0.0009 (6)	0.0029 (6)
Cl2	0.0255 (7)	0.0362 (8)	0.0278 (7)	0.0049 (6)	0.0011 (6)	-0.0056 (6)
C13	0.0239 (6)	0.0386 (9)	0.0312 (7)	0.0024 (6)	-0.0081 (6)	-0.0064 (7)
Cl4	0.0282 (7)	0.0296 (8)	0.0437 (9)	-0.0046 (6)	0.0073 (7)	-0.0032 (7)
N1	0.0149 (19)	0.033 (3)	0.022 (2)	-0.002 (2)	-0.0005 (17)	0.003 (2)

N2 N3 N4 Pt1	0.0113 (19) 0.019 (2) 0.025 (3) 0.01531 (11)	0.029 (3) 0.030 (3) 0.034 (3) 0.02622 (12)	0.031 (3) 0.040 (3) 0.031 (3) 0.02281 (12)	0.0035 (19) 0.0024 (19) -0.007 (2) 0.00055 (8)	0.0002 (18) 0.001 (2) 0.002 (2) -0.00071 (8)	0.002 (2) -0.002 (3) 0.001 (2) -0.00174 (9)
Geometric parav	neters (Å. °)					
	(11,)	1 2 4 2 (0)			1.24	
CI—NI		1.342 (8)	C9—N.	3	1.34	19 (8) 24 (0)
CI = C2		1.337 (10)	C10 N	10	1.48	54 (9) 55 (0)
C1 - H1		0.9300	C10—F	N4 N1 1	1.53	(9)
$C_2 = C_3$		0.0200	C10-C	212	1.30	$\frac{32}{10}$
$C_2 = H_2$		1 385 (9)	C11_E	J12 I11	0.93	800
С3—Н3		0.9300	C12-0	111	0.93	74 (13)
C_{3}		1 398 (8)	C12—E	112	0.93	soo
С4 С5 С4—Н4		0.9300	C13-C	112 114	1.37	77 (12)
C5—N1		1 353 (8)	C13—F	113	0.93	800
C5—C6		1.555 (6)	C14—N	J4	1 33	39 (10)
C6—N2		1 359 (8)	C14—F	114	0.93	300
C6—C9		1.411 (9)	Cl1—P	t1	2.32	219 (16)
C7—N2		1.338 (7)	Cl2—P	t1	2.29	945 (16)
С7—С8		1.379 (10)	Cl3—P	t1	2.30	066 (16)
С7—Н7		0.9300	Cl4—P	t1	2.31	64 (18)
C8—N3		1.315 (10)	N1—Pt	1	2.03	36 (5)
C8—H8		0.9300	N2—Pt	1	2.03	32 (6)
N1—C1—C2		121.2 (7)	C11—C	C12—C13	119.	.6 (8)
N1—C1—H1		119.4	C11—C	С12—Н12	120	.2
C2—C1—H1		119.4	C13—C	С12—Н12	120	.2
C1—C2—C3		119.7 (7)	C12—C	C13—C14	118.	.7 (8)
С1—С2—Н2		120.2	C12—C	С13—Н13	120	.6
С3—С2—Н2		120.2	C14—C	С13—Н13	120	.6
C2—C3—C4		119.6 (7)	N4—C	14—C13	124	.1 (8)
С2—С3—Н3		120.2	N4—C	14—H14	118.	.0
C4—C3—H3		120.2	C13—C	С14—Н14	118.	.0
C3—C4—C5		118.8 (6)	C1—N	1—C5	120	.9 (6)
C3—C4—H4		120.6	C1—N	l—Pt1	125	.0 (5)
C5—C4—H4		120.6	C5—N	l—Pt1	114.	.1 (4)
N1—C5—C4		119.7 (6)	C7—N2	2—C6	119.	.1 (6)
N1—C5—C6		115.3 (5)	C7—N2	2—Pt1	126	.5 (5)
C4—C5—C6		124.9 (6)	C6—N2	2—Pt1	114.	.2 (4)
N2—C6—C9		118.6 (6)	C8—N3	3—C9	118.	.5 (6)
N2—C6—C5		113.8 (5)	C14—N	V4—C10	115.	.4 (7)
C9—C6—C5		127.6 (6)	N2—Pt	1—N1	80.4	+ (2)
N2—C7—C8		120.1 (7)	N2—Pt	I—CI2	176	.45 (16)
N2—C/—H/		119.9	NI—Pt	1—CI2	96.1	12 (17) 15 (16)
C8—C7—H7		119.9	N2—Pt	1—C13	94.1	15 (16) 20 (18)
N3-C8-U2		122.1 (6)	NI—Pt		1/4	.20 (18)
N3-C8-H8		119.0	CI2—P		89.2	20 (0) A (17)
С/—С8—Н8		119.0	N2—Pt	1—Cl4	90.5	94 (17)

N3	120.2 (6)	N1—Pt1—C14	89.68 (17)
$N_3 - C_9 - C_{10}$	116 1 (6)	Cl2— $Pt1$ — $Cl4$	90 30 (6)
C6-C9-C10	123 5 (6)	Cl3—Pt1—Cl4	92.45 (7)
N4—C10—C11	124.6 (7)	N2—Pt1—Cl1	88.17 (17)
N4—C10—C9	113.8 (6)	N1—Pt1—Cl1	86.68 (17)
C11—C10—C9	121.5 (6)	Cl2—Pt1—Cl1	90.78 (6)
C12—C11—C10	117.6 (7)	Cl3—Pt1—Cl1	91.11 (6)
C12—C11—H11	121.2	Cl4—Pt1—Cl1	176.30 (7)
C10—C11—H11	121.2		
N1—C1—C2—C3	-0.5 (12)	C8—C7—N2—C6	-1.0(10)
C1—C2—C3—C4	2.0 (11)	C8—C7—N2—Pt1	-175.7 (5)
C2—C3—C4—C5	-3.6 (10)	C9—C6—N2—C7	-9.1 (9)
C3—C4—C5—N1	3.6 (9)	C5—C6—N2—C7	169.0 (5)
C3—C4—C5—C6	180.0 (6)	C9—C6—N2—Pt1	166.1 (5)
N1—C5—C6—N2	9.9 (8)	C5—C6—N2—Pt1	-15.7 (7)
C4—C5—C6—N2	-166.6 (6)	C7—C8—N3—C9	-3.2 (11)
N1-C5-C6-C9	-172.2 (6)	C6—C9—N3—C8	-7.3 (10)
C4—C5—C6—C9	11.3 (10)	C10—C9—N3—C8	167.8 (7)
N2—C7—C8—N3	7.7 (11)	C13-C14-N4-C10	2.0 (11)
N2—C6—C9—N3	13.6 (10)	C11-C10-N4-C14	-0.5 (10)
C5-C6-C9-N3	-164.2 (6)	C9-C10-N4-C14	178.0 (6)
N2-C6-C9-C10	-161.1 (6)	C7—N2—Pt1—N1	-172.4 (6)
C5—C6—C9—C10	21.1 (10)	C6—N2—Pt1—N1	12.8 (5)
N3-C9-C10-N4	-132.2 (7)	C7—N2—Pt1—C13	9.7 (6)
C6C9	42.7 (9)	C6—N2—Pt1—C13	-165.2 (4)
N3-C9-C10-C11	46.4 (9)	C7—N2—Pt1—Cl4	-82.8 (5)
C6—C9—C10—C11	-138.7 (7)	C6-N2-Pt1-Cl4	102.3 (4)
N4—C10—C11—C12	-2.2 (11)	C7—N2—Pt1—Cl1	100.7 (5)
C9—C10—C11—C12	179.4 (7)	C6—N2—Pt1—Cl1	-74.2 (4)
C10-C11-C12-C13	3.4 (11)	C1—N1—Pt1—N2	172.5 (6)
C11—C12—C13—C14	-2.1 (12)	C5—N1—Pt1—N2	-7.1 (4)
C12-C13-C14-N4	-0.7 (12)	C1—N1—Pt1—Cl2	-8.3 (6)
C2-C1-N1-C5	0.5 (11)	C5—N1—Pt1—Cl2	172.0 (4)
C2-C1-N1-Pt1	-179.1 (6)	C1—N1—Pt1—Cl4	81.9 (6)
C4—C5—N1—C1	-2.1 (9)	C5-N1-Pt1-Cl4	-97.7 (4)
C6—C5—N1—C1	-178.8 (6)	C1-N1-Pt1-Cl1	-98.8 (6)
C4—C5—N1—Pt1	177.5 (5)	C5—N1—Pt1—Cl1	81.6 (4)
C6—C5—N1—Pt1	0.8 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!\!A$
C1—H1···Cl2	0.93	2.68	3.279 (7)	122
C3—H3···Cl1 ⁱ	0.93	2.83	3.557 (7)	136
C4—H4···N4	0.93	2.59	3.000 (10)	107
С7—Н7…Сl3	0.93	2.69	3.247 (7)	120
C14—H14…Cl1 ⁱⁱ	0.93	2.74	3.599 (8)	154
	1/0 1			

Symmetry codes: (i) -x+1/2, -y-1, z+1/2; (ii) x+1/2, -y-1/2, -z-1.

Fig. 1

Fig. 2

